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We present a new method for solving two-dimensional convection- 
dominated convection-diffusion equations containing spatially and 
temporally localized source terms. The method uses grid-free transport: 
particles which carry point values of the concentration gradient move 
by convection and undergo random-walk to simulate diffusion. No 
numerical diffusion is introduced. Equations for the evolution of the 
gradient values are solved. The concentration is recovered from the par- 
ticle data by solving Poisson equations. The method is applied to 
problems in rotational and elongational flow fields. Numerical results 
demonstrating convergence of the method are presented. 0 1992 

Academic Press. Inc. 

1. INTRODUCTION 

In this paper we present a new method for solving two- 
dimensional convection-diffusion equations, in particular 
those in which convection dominates. Such situations are 
often described by the statement Pe $1, where the (non- 
dimensional) Peclet number is defined by Pe = UL/a, with 
U and L a characteristic velocity and length, respectively, 
and (T the diffusion coefficient. 

Convection-dominated convection-diffusion equations 
arise in many engineering applications, but our interest is 
motivated primarily by the occurrence of such an equation 
in our model of platelet aggregation during blood clotting 
[9]. In this model, a platelet, which is a type of blood 
cell, may be stimulated to secrete the chemical adenosine 
diphosphate (ADP) into the surrounding blood plasma. 
The secreted ADP acts as a signal to other platelets: A 
sufficiently high plasma concentration of it near a platelet 
which has not yet secreted ADP induces that platelet to 
secrete its store of ADP, as well as to become “sticky” and 
thus able to cohere with other platelets to form an 
aggregate. The transport of ADP, following its secretion, is 
described by a convection-diffusion equation, and in typical 
physiological situations, convection is strongly dominant 
over diffusion. The secretion of ADP by a platelet implies 
the existence of a source of ADP. The facts that the diameter 
of a platelet is much smaller than that of the blood vessels 

we study (the diameter ratio is about 1:25) and that we 
model each platelet as a discrete entity, mean that each 
platelet’s contribution to this source is highly localized in 
space. The timecourse of secretion is such that the source is 
also highly localized in time. At any instant during the 
aggregation calculations, several platelets may be secreting 
ADP, so that the ADP source is a sum of spatially localized 
terms. Since the locations of the secreting platelets depends 
on their past motion (part of which is random), the spatial 
distribution of the ADP source is not known a priori. If we 
let c(x, t) denote the concentration of the chemical, then we 
are interested in equations of the form 

where Pe % 1 and s(x, t) is a sum of terms each of which is 
highly localized both in space and time. We assume that the 
velocity field u is known, perhaps from another portion of 
the computation. 

Finite difference methods and spectral methods are not 
well suited to this type of problem. There are two major 
reasons for this: the small nondimensional diffusion coef- 
ficient Pe ~ ’ and the presence of multiple randomly-situated 
highly localized sources. Standard finite-difference schemes 
for convection-dominated convectiondiffusion problems 
either suffer from nonphysical oscillations or introduce 
numerical diffusion which overwhelms the small physical 
diffusion (see, for example, [ 13 ] ). More sophisticated linite- 
difference schemes can reduce numerical diffusion (and 
increase resolution) through the use of adaptive grids which 
concentrate computational effort in regions in which the 
solution’s gradient is large. This is not practical in the 
aggregation calculations because the nature of the sources 
would compel frequent and extensive regridding. Spectral 
methods are well suited for smooth problems, or for 
problems which involve a steep gradient at a known loca- 
tion at which computational nodes can be concentrated. 
Our problem is not of one of these types. Furthermore, 
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spectral methods for convection-diffusion problems have 
an error which becomes unbounded, at least linearly, as 
Pe -+ co [;?I. 

By contrast, the particle method we present introduces no 
numerical diffusion and automatically concentrates com- 
putational effort near steep gradients. In our method, dis- 
crete particles are used to track the evolution of the concen- 
tration field. These particles are convected at the local fluid 
velocity and, in addition, undergo a random walk motion to 
simulate the diffusion. Each particle carries with it point 
values of the gradient of the concentration field. At any 
instant of time, the concentration field may be recovered 
from the particle locations and gradient values by integra- 
tion. Since the random walk treatment of diffusion is the 
same as the treatment of viscosity in the random vortex 
method [6] and of diffusion in other related grid-free 
methods (reviewed in [lo]), our method shares features of 
these methods: Particle transport reflects the true physical 
diffusivity, for it does not introduce additional numerical 
diffusion. Although the method introduces a statistical error 
which can be large for the concentration gradient field, the 
fact that the concentration c is obtained through integration 
makes the statistical fluctuations in c itself much smaller. 
Furthermore, the statistical fluctuations decrease towards 
zero as Pe + co. The integration step, which is carried out 
on a lattice, introduces a small amount of smoothing, but 
this smoothing is not cumulative. We note that our method 
also has the potential to allow study of Eq. (1) in irregular 
domains. This will be pursued in future work. 

2. CONTINUUM EQUATIONS 

We wish to find the solution c(x, t) to the (nondimen- 
sional) convection-diffusion equation (1). We assume that 
the velocity field u(x, t) and the source term s(x, t) are 
known, and we further assume that the flow is incom- 
pressible so that V . u = 0. Instead of working directly with 
Eq. (l), we consider the system of equations 

=(i$o:)-(:: I:)(::)+(;:)~ t2) 
obtained by differentiating each term in Eq. (1) with respect 
to x and y. The process of obtaining c(x, t) from Eq. (2) 
consists of two stages: one stage, which we call “transport,” 
involves use of a Lagrangian analogue of Eq. (2) to move 
particles and to evolve “gradient vectors” associated with 
each particle. The second stage of the process, which we 
term “reconstruction,” begins with the definition of Eulerian 
fields c, and c, from the instantaneous positions of the par- 
ticles and values of the gradient vectors. The concentration 

c(x, t) is then determined from the data (c,, c~). We 
will describe the solution process for a square domain 
R = [0, l] x [0, 11, but, we believe that the method will 
also work in irregular domains (see below). 

We begin our discussion with the reconstruction stage of 
the process. Suppose that at time t, values of the smooth 
functions c., and cY are known at all points of R. (Since the 
time t does not enter explicitly into the reconstruction 
process, we drop reference to it during this portion of 
the exposition.) Introduce functions 4 and $ which satisfy 

A# = c,, in R 

#,, = 0, for y=O and p=l (3) 

d=O, for x=0 and x= 1 

A$ = c.v, in R 

*.r = 0, for x=0 and x=1 (4) 

* = 0, for y=O and y= 1. 

Define f(x, y) = c(x, y) - d-;(x, y) - $,,(x, y). Note that 
Af = (c, - Ad), + (c? - A$),,, = 0 in R; that is, f is 
harmonic. Further, f,(x, y) = c, - 4,,x - I), = dyy - t+hxJ. 
Since, d(O, y) = 0, it follows that $,(O, y) = 0. Also, the 
equation @JO, y) = 0 implies that $,,(O, y) = 0. Hence, 
lim r +0 f.Jx, y) = 0. Similarly, the normal derivative off 
vanishes on the other edges of R. So, f is a constant function 
(at each time), and therefore, at time t, 

c=fj.+$,+const. (5) 

The constant in Eq. (5) may be determined from the value 
of c at a boundary point (e.g., c may be zero at the upstream 
inlet to the domain), or from the total amount of chemical 
in domain R. (It follows upon integrating Eq. (5) over R 
and using the boundary values of C$ and II/ that the constant 
equals the total amount of chemical in R divided by the area 
of R.) We use the latter approach in this paper. We note that 
we can offer no proof that the function c defined by Eq. (5) 
is non-negative. However, in all of the computational tests 
we performed, this was always the case. In summary, c can 
be reconstructed from c, and cY by solving the two Poisson 
equations (3) and (4) and then using Eq. (5). 

Note that the boundary conditions on c do not enter into 
the reconstruction process; they influence only the transport 
of (c,, c’) (see below). Thus, it should be possible to carry 
out the reconstruction for transport in an irregular region 
by embedding that region in a rectangle and imposing 
boundary conditions on 4 and Ic/ (as in Eqs. (3) and (4)) 
along the edges of the rectangle. 

The transport of (c,, c?) is accomplished by tracking 
discrete particles xk = (x,, yk), with each of which is 
associated a “gradient vector” g, = (gx,, gyk). Each such 



particle-gradient pair contributes to the Eulerian 
concentration-gradient field in such a way that this field is 
given by the expression 

(x, Y, t) =I gk(t) 6.0 - xk(t)r Y - ydt)). (6) 
k 

Here, S, is an approximation to the two-dimensional Dirac 
delta function; it has support in a region of diameter O(s) 
and has integral 1. Since 6,s(x, y) is a smooth (albeit highly 
localized) function, Eq. (6) defines smooth functions c, and 
cg from the particle data (x,, gk). We note that because 6, 
has units of reciprocal length squared, g, has units of 
concentration times length. 

New particles xk and gradient vectors g, are introduced 
whenever a localized source of chemical is present. If such a 
source is currently centered at a point 6 = (<i, t2) and 
produces an amount of chemical A, during a short time 
interval dt, we imagine that this chemical is instantaneously 
distributed uniformly in a small disk of radius Y,, about 5. 
The incremental concentration field due to this secretion is 
zero outside of this disk and c,,= A,,/r~r,~ within it. The 
(singular) gradient field associated with this concentration 
field may be expressed as 

0 
1; (4 I?)=co j 

4-X 6(x-X)d(y- Y)--- 
IIX-SlI=nl 115-w ds 

or 

0 
;.x 
.L’ 

(x, y) = -co j; 6(x - i”, - Y. cos(2na)) 

x 6( y - t2 - r. sin(2ncc)) 

x (cos(2za), sin(27ccc)) 2nr, dz. 

Formally, this is approximated by the expression 

respectively. In Eq. (13) the derivatives of u and u are 
evaluated at x,(t). In Eq. (12), w, is a Brownian motion 
path, so that for thejth component w.~,~ of wt, the difference 
‘2’, * - w,.* is a Gaussian-distributed random variable with 
mean 0 and variance t - s (for t > s). 

(8) 
Equations (12) and (13) deserve further discussion. In 

the absence of diffusion, these equations are simply the 
Lagrangian form, or characteristic equations, of Eq. (2) 
provided we identify g with (c,, c-b,). Equation (12) also 
includes a random-walk term to simulate the diffusion term 
in Eq. (2); this is identical to the way diffusion is modelled 
in the random vortex method for solving the Navier-Stokes’ 

x cos(2nak), y - 52 - r. sin(2nmk)) equations (see [6]) and is motivated by the following 
considerations: According to Eq. (2), if u = 0, then c, and 

2xr, 
x (cos(27ra,), sin(2xa,)) 7, (9) 

cY each satisfy a simple diffusion equation with diffusion 
coefficient Y = Pe ‘. The Green’s function for this equation 
(for an unbounded domain) is 

our 

G(x, x’, t) = & 
exp (- llx-$‘i 

where tlk = k/m. For finite m, Eq. (9) motivates 
introduction of m new particles, 

(7) 

xk = (5, + r. cos(27&), tf2 + r. sin(27%)), (10) 

along with corresponding gradient vectors, 

g, = -2xr,c,/m (cos(2na,), sin(2rccr,)). (11) 
xIexp { P()4j[y’)2}. 

(4?Ttv)“2 
(14) 
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The vector g, should be thought of as originating at the 
point xk. As m -+ co, more and more particles are intro- 
duced and the strength 2zr,c,/m (but not the form) of each 
gradient vector diminishes accordingly. New particles are 
introduced in this way as long as the source remains active. 

It will simplify the subsequent discussion if we assume 
that the total production of chemical occurs at time 0 and 
results from a single source centered at 5; in effect, the 
source is replaced by an initial distribution of chemical and 
corresponding particleegradient pairs. (The corresponding 
simplification in Eq. (2) is the omission of the (s,, sY) term.) 
There is no loss of generality in making this simplification. 
The linearity of the equations with which we are concerned 
and the method by which new particles are introduced, 
allow us to regard the solution to a problem which involves 
prolonged secretion from one or more sources as a super- 
position of solutions from problems of the simpler type we 
will consider. Henceforth, we will consider a collection of 
particles and gradient-vectors whose initial values are given 
by Eqs. (lO))(ll). 

The motion of the particles xk and the evolution of the 
gradient vectors g, are governed by the equations 

dxk(t) = u(x,(t), t) dt + (~/Pc?)“~ dw, (12) 

and 
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Equation (14) can be given a probabilistic interpretation. At 
time 0, place n particles xk = (xz, y!) at the point (x’, y’) 
and assign to each particle a strength l/n. Divide the time 
interval [0, t] into m increments of size At, and during each 
increment, let xk undergo a random walk; that is, define 

x:+ ' =x: + (2 Atv)“’ q;,, 

~2."' = y; + (2 A~v)“~ &, 
(15) 

for I = 0, . . . . m - 1, where {v:,~, v:,~} are independent 
Gaussian random variables, each with mean 0 and variance 
1. The displacement at time tin the x-direction is a Gaussian 
random variable with mean 0 and variance 2m Atv = 2tv. 
A similar statement holds for the y-displacement. These 
displacements are independent, so the probability that a 
particle will fall in the box B = [x, x + Ax] x [y, y + Ay] is 
(47ctv) - “2 exp( -(~--x’)~/4tv}(4~~tv)-“~ exp{ -(y- y’)‘/ 
4tv) Ax Ay = G(x, x’, t) Ax Ay and lim, _ o. (Total strength 
in B)/Ax Ay = G(x, x’, t). If, as in the present application 
of the random-walk model, the initial distribution is 
c,(x, 0) = f(x), then the solution at time t is 

c,(x, t) = j-JR2 G(x, x’, t) Ax’) dx’. (16) 

Suppose that n particles xk are distributed randomly in the 
support offand that with particle xk is associated a strength 
f(x&z. Suppose also that each particle undergoes the 
random-walk motion given by Eq. (15) as before. Then, at 
time t, the quantity (Total strength in B)/Ax Ay approaches 
the expression on the right-hand side of Eq. (16) as n + co. 
(For further discussion, see [7].) 

Equations (12t( 13) describe the transport of (c,, cy ) 
when xk is away from the material boundary of the flow 
domain. If xk contacts the boundary, then the boundary 
conditions on c determine how g, is treated. For example, 
suppose we want c, = 0 along y = 0. Then, (a/ay)(c,) = 0 as 
well. So, this boundary is an absorptive boundary for c, and 
a reflective boundary for c,. If xk hits this boundary, it is 
reflected back into the domain and ( gxk, gyk) is reflected as 
k% - gyk). The boundary condition should therefore be 
satisfied in a statistical sense. Note that this procedure is not 
limited to a boundary parallel to a coordinate axis; the 
appropriate reflection for g, is readily determined at any 
boundary point at which the normal direction is known. 

In summary, the solution of Eq. (1) is carried out in two 
stages: The Lagrangian transport stage begins with the 
introduction of new particles xk and gradient vectors g, 
according to equations like Eqs. (lo)-( 11) when a source is 
active. The subsequent motion of x,+ by convection and dif- 
fusion, and the evolution of g, are governed by Eqs. (12) 
and (13), respectively (with appropriate modifications at 
boundary points). The Eulerian reconstruction stage 
involves definition of gradient fields c, and c., from the 

particle data {xk, gk} by means of Eq. (6). The Poisson 
equations (3) and (4) are then solved, and c is obtained 
from Eq. (5). Note that the information transfer between 
the Lagrangian and Eulerian stages is one-way, from 
Lagrangian to Eulerian; hence, errors made in computing 
approximate solutions to the Eulerian equations do not feed 
back to corrupt the Lagrangian particle data. 

It is interesting to consider the behavior of a system like 
that described by Eqs. (S), (lO)( 13) but in the absence of 
diffusion. Suppose that the small secretion disk is centered 
at the origin and that a continuum of particles ~(a, 0) and 
gradient vectors g(cc, 0) is introduced along its boundary 
curve r,,. Equation (8) can be rewritten 

0 ;-x (x, y,O)= -cos,' 6(X-X(&0)) 
1 

x &Y - ~(a, 0)) n(a, 0) da, (17) 

where n(cl, 0) = (y,(cc, 0), -x,(cI, 0)) is an outward normal 
to the initial curve r,. Corresponding to Eqs. ( 1 Ot( 11) we 
now have 

x(12,0) = (x(c(, 0), y(a, 0)) = (r. cos(27m), r. sin(2na) 

g(4 0) = -co44 0) 
1 18) 

for 0 Q c( < 1. We suppose that for t > 0, the vectors X(CL, t) 
and g(a, t) evolve according to 

x, = 444 t), t) (19) 

respectively, with x(u, 0), g(cl, 0) given as above. We define 
the vector field (Z,, ZY) from this data using, by analogy 
with Eq. (8), the equation 

x &Y - Y(M, t)) dci. (21) 

At t = 0, the curve r, separates a region of area a, with 
concentration c0 from a region with concentration 0. The 
curve r, is a material curve of the fluid, and so it evolves in 
time t to a curve Tr, which, because of the incompressibility 
of the flow, encloses a region of area a,. Hence, since Eq. (1) 
implies that in the absence of diffusion there is no flux across 
the material curve TI, T, also separates a region of concen- 
tration c0 from a region of concentration 0. The gradient 
field associated with the situation at time t is therefore 

0 z-X 
Y 

(x, y, t) = -co ji n(a, 2) 6(x - ~(a, t)) 
x Sty - ~(a, t)) & (22) 
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since the curve T, is defined by the points (X(CI, t), ~(a, t)), 
0 < a < 1, which move according to Eq. (19). This equation 
is identical to Eq. (21) except that the vector g(a, t) in 
Eq. (21) is replaced by the vector -c,n(a, t). Hence, the 
system Eqs. (18 )(21) will give the correct gradient field 
provided g(a, t) = -c,n(a, t) for all t 20. This equation 
holds for t = 0, and so, by the uniqueness theory for linear 
ordinary differential equations, it will hold for all t > 0, 
provided n(a, t) satisfies Eq. (20). Differentiating n(a, t) 
with respect to t, we find 

44 t) = (Y,,, -x,dT 

= (u,(x, YL -4% Y))’ 

= (-:I: -::>( 2:) 
U.-c % 

=-( > n(a, t). U.” 0, 
The last step uses the fact that U, + uy = 0. Hence, g evolves 
so as to remain normal to Tr, and, since llgll = c0 /InIl = 
dk)2 + CY,)‘)“‘~ llgll grows in response to local 
stretching of the curve Tr. 

3. DISCRETE EQUATIONS 

In this section, we discuss the discrete version of the 
reconstruction and transport process that we use to find an 
approximate solution to Eq. (1). The method that we use is 
a hybrid in the sense that a computational lattice is used 
during the reconstruction process to find 4 and II/, while the 
points xk are introduced and tracked independently of this 
lattice. We will again assume that our computational 
domain is the square R = [0, l] x [0, 11, and we place a 
uniform lattice with lattice-spacing h over R. The value of a 
lattice functionfat a point (i/z, j/z) of the lattice is denoted 
fi,i. Time is discretized into increments of length At and a 
superscript n on a variable denotes its value at time t = n At. 

We begin by considering the analogue of Eqs. (3 t( 5) and 
for now assume that values of the functions c, and c, are 
known at all points of the lattice. Equations (3) and (4) are 
each replaced with a discrete Poisson equation with the lat- 
tice functions c, and c, as their respective inhomogeneous 
terms. In these equations, we use the standard second-order 
discrete Laplacian operator based on a five-point stencil. 
The system of linear equations which is defined by each 
discrete Poisson equation is solved by a combination of 
Fourier transform and tridiagonal solvers (see, for example, 
[lS]). More specifically, for the discrete analogue of 
Eq. (3), a fast one-dimensional cosine transform (with 
respect to y) is performed on c, along each line x = j, h of 
the lattice. For each Fourier mode, an independent tri- 
diagonal system, which corresponds to differencing in the 
x-direction, results. These are easily solved, and a set of one- 

dimensional inverse fast cosine transforms yields values of 4 
at all lattice points. This fast solver has the virtue that it can 
easily be implemented in such a way as to vectorize on a 
CRAY computer. During the Fourier transform step, we 
perform one-dimensional transforms on many independent 
data sets; vectorization is achieved by replacing each scalar 
assignment statement in a standard one-dimensional fast 
cosine transform subroutine by a DO-loop whose index 
indicates the successive datasets. A similar technique is used 
to achieve vectorization in the solution of the tridiagonal 
systems. The discrete version of Eq. (4) is solved in a similar 
fashion, except that the roles of x and y are reversed. Once 
lattice values of 4 and $ are known, lattice values of c are 
calculated using second-order difference approximations to 
the derivatives in Eq. (5). Earlier we remarked that we 
believe that our method can be used to solve Eq. (1) in an 
irregular domain by embedding that domain in a rectangle 
for the reconstruction stage. In that case, the use of fast 
Poisson solvers (such as that just described) would still be 
available to us. 

We turn next to the solution of the stochastic differential 
equations, Eq. (12) which govern the motion of the par- 
ticles xk. For convenience, we will ignore the subscript k. 
The usual approach to approximating the solution of an 
equation of this type is based on fractional steps (see, for 
example, [6, lo] ). To advance the solution from time n At 
to time (n + 1) At, a standard ordinary differential equation 
solver is used to find an approximate solution x* to the 
equation 

dx 
~=u(x, t); x(n At) = xn (23) 

and then an independent increment n of the Brownian 
motion (with mean 0 and variance 1) is added to give 

X ‘+’ =x* + (2 AtJPe)‘12 q. (24) 

However, Chang [3] has shown that no matter how 
accurately Eq. (23) is solved, Eq. (24) gives, at best, a tirst- 
order accurate solution to Eq. (12) (see [3] for precise 
definitions of the order of an approximation to a stochastic 
differential equation like Eq. (12)). In the same paper, 
Chang proposed a new method of Runge-Kutta type for 
solving Eq. (12) and gave numerical evidence that this 
scheme yields a second-order accurate approximation to the 
solution of Eq. (12). Recently, Long [ 123 proved that the 
scheme is indeed second-order accurate. Chang’s scheme, 
which is based on the mid-point rule, is as follows: 

q = xn + l/2 Atu(x”, n At) (25) 

q* =x”+ l/2 Atu(x”, n At) + (2 At/Pe)‘l* q” (26) 

X “+I = xn + 1/2{u(q, (n + l/2) At) 

+ u(q*, (n + l/2) At))} At + (2 At/Pe)‘12 q”. (27) 
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Here, n” = (VT, VT) is a pair of independent Gaussian ran- 
dom variables each with mean 0 and variance 1. In practice, 
these numbers are generated using the Box-Muller transfor- 
mation on two uniformly-distributed random variables [ 81. 
The random steps 9” from different timesteps are also 
chosen independently of one another. Note that in Eqs. 
(25)-(27) the deterministic part u(x, t) and the random 
step are inter-twined. This is essential for achieving a higher 
order of accuracy than the fractional-step schemes can 
provide [3]. 

The gradient vectors g, evolve according to Eq. (13). Let 
S denote the matrix of velocity derivatives which appears in 
that equation. Then, the exact solution to this equation over 
the time interval (n At, (n + 1) At) is, of course, given by the 
expression (again we suppress the subscript k) 

g((n+ 1) At)=exp 

(28) 

where x(z) is the (exact) position of the corresponding 
particle. We approximate the integral in this expression 
using the trapezoidal rule. Let 

Q = +(S(x”, n At) + S(xn+‘, (n + 1) At)}. 

Then, we define 

(29) 

g n+’ =exp{ -AtQ} g”. (30) 

It follows from the incompressibility of the flow field 
(u, + o, = 0), that S(x(r), t) and, hence, also Q have zero 
trace. Thus, the exponential exp{ -Ate> has a series 
expansion which collapses to two terms: 

exp{ - AtQ} = Zcosh(y” At) - Q sinhrnfl At). (31) 

Here, Z is the 2 x 2 identity matrix and y” = (U,’ + us.U,)li2, 
where U, = ${u,(x~, n At) + u,(x~+~, (n + 1) At)) and 
similar expressions define tr; and V,. Our formula for 
updating g is, therefore, 

g Zcosh(y” At)- Q 
sinh(y” At) 

f 
g”. (32) 

Equations (25))(27) and (32) comprise the particle/ 
gradient-vector update step of our calculations. We have 
tacitly assumed in the discussion of these equations that 
analytic expressions for the velocity u and its derivatives 
are available for evaluation in Eqs. (25k(27) and (32). In 
practice, the velocity is more likely to be known only at 

discrete times (n At) and then only at points of a lattice. 
Hence, in general, it is necessary to interpolate these lattice 
values to the particle positions for use in Eqs. (25)-(27). 
Further, Eq. (27), as written, calls for the evaluation of u at 
time t = (n + $) At. If this data is unavailable, we replace 
u( ., (n + 4) At) by u( ., n At) or i(u( ., il At) + u( ., (n + 1) At)), 
depending on whether u( ., (n + 1) At) is currently known. If 
the velocity field is smooth and slowly varying in time, then 
these modifications of Eqs. (25)-(27) should cause little loss 
in accuracy. Similar considerations apply to the velocity 
gradients required by Eq. (32). Equations (25))(27) and 
(32) can easily be implemented in a vectorizable fashion by 
making the index of innermost DO-loops run over the index 
k of the particles. If it is necessary to interpolate the velocity 
and its derivatives from a lattice to the particle positions, 
then preliminary use of the CRAY GATHER utility to 
collect the necessary lattice values will facilitate vectoriza- 
tion of the update steps. 

It remains to specify a discrete version of Eq. (6) by 
means of which the particle data { xk, gk} define the lattice 
functions c”, and CC that appear in the discrete Poisson equa- 
tions for #J and $. This is accomplished by the equation 

(et9 Cy)z,j= i l!;Hi,j(xk”) 

k=l 

(33) 

where N is the total number of particles in the domain and 
H,,j(x, v) is the piecewise-linear “hat” function given 
by Hi,j(x, y)=h-*max{O, 1 ---A-’ Ix-iZz[} max{O, l- 
h-r ly - jhl }. Hi,.i(x, v) has support consisting of the 
four lattice points nearest to the point (x, y) and 
xi, j h2Hi, j(x, JJ) = 1 for any (x, y). The second property has 
the important consequence that the process of transferring 
data from the particles to the lattice is conservative; that is, 
if %k is the lattice function generated by the x-component 
of g,, then Ci, j Z?(C,,,)~, j = gx,. A similar relation holds for 
the y-component of the gradient. 

The computational complexity of our method is as 
follows: In the transport stage, each particle is moved, the 
associated gradient vector is updated, and values are trans- 
ferred to the lattice. Since this is done independently for 
each particle, the work required is linearly proportional to 
the total number N of particles. The fast solvers used in the 
reconstruction stage require O((NG) log(NG)) operations, 
where NG is the total number of lattice points. 

In his study of (inviscid) flows with slight density varia- 
tions, Anderson [ 1 ] used particles to transport point values 
of the density gradient (without diffusion) and used a 
representation of the gradient field similar to our Eq. (6). 
His method of recovering the density from the density 
gradients is based on the formula (we use c for density) 

c=G,*c,+G,*c,,, (34) 
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where G is the fundamental solution to Laplace’s equation 
in the plane and * denotes convolution. This formula is 
derived from the identity c = G * AC using integration by 
parts, under the assumption that initially c has support in a 
bounded region. We note that our Eqs. (3)-(5) yield an 
identical expression when we let the rectangle R grow to fill 
the plane. So, at the continuum equation level, the two 

a 
EXkT ShLUTlON TIME= 0 00000 ’ COMPUTED SOLUTION TIME= 0.00000 

EXACT SOLUTiON TIME= 0.00100 

b 

COMPUTED SOLUTION TIME= 0.00100 

approaches are almost the same. However, at the level of 
their discrete implementation, they differ substantially. 
Anderson substitutes Eq. (6) into Eq. (34) to obtain 

4x, t)= 2 {(G r * 6,)(x - Xk(t)) kYk(f) 

k=l 

+ (G,. * 6,)(X -X/c(f)) gyk(t)f. (35) 

c 
EXACT SOLUTION TIME= 0.00400 COMPUTED SOLUTION TIME= 0.00400 

EXACT SOLUTlON TIME= 0.00500 COMPUTED SOL”T,ON TIME= 0.00500 

d 

i --EXACT SOLUTION TIME= o.oo*oo COMPUTED SOLUTION TIME= 0.00200 i EXACT SOLUTION TIiii= 0.01000 [ CdkiiT% S%i%ilOy TIiii?= OOi600 

FIG. 1. Exact and computed concentrations at selected times. Flow is rigid rotation: Pe = 4.5, N = 16,000, At = 0.05~~. Time is measured in seconds. 
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We solve discrete analogues of Eqs. (3)-(4). Both 
approaches introduce smoothing through the functions 6,, 
and the major difference between them is in the complexity. 
To evaluate c at m points requires O(mN) operations 
with Eq. (35) and O((NG) log(NG)) operations with our 
approach. For large m and N, the lattice-based approach is 
more cost effective. 

4. RESULTS 

In this section, we report results of tests of the above 
method on problems involving three different flow fields. 
Since our aim in this project is to develop a method for 
solving the ADP transport equation that arises in our 
platelet aggregation studies, we devised simple test 

b a 

N= 8000 N= 4000 

00 il 0.0 I- 
0.00 

f le 0 050 

0.040 

5 0 030 

2 
Fj 

5 

5 0.020 

0.010 

0.050 

0.040 

g 0.030 
s 

g 

5 

2 
8 0020 

0.010 

0.000 
0 

N= 4000 
N= 8000 

0.000 
0 00 0.05 0 

TIME 

FIG. 2. Time course of exact concentration, ensemble average of computed concentrations, and ensemble average +/- standard deviation at six 
target points (x0 + jd,, y,,), j=O, 1, . . . . 5. Top (bottom) panels show concentrations for points 0, 1, 2 (3, 4, 5). Note the difference in vertical scales. 
N = 4000 for the first top panels and increases to N = 32,000 for final bottom panels. Time is measured in seconds. 
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problems that would indicate how the method would work 
in that context. In each test, the initial state is a uniform 
concentration cO= 1 inside of a disk D, of radius r,, (and 
diameter d,,), centered at x0 = (x0, yO), and concentration 0 
outside of this disk, There is no source of chemicals at later 
times and, hence, s(x, t) = 0 in Eq. (1). Each test problem 
involves three physical parameters: the radius of the disk yO, 

TV= 16000 

0 050 
I9 

Y= 16000 

the convection time scale ro, and the diffusion coefficient (TV. 
These are specified in CGS units with values relevant to the 
aggregation calculations. 

In the first set of tests, the flow field is that of a rigid 
rotation about the point x0. In physical units, u = 
(u(x, y), u(x, y)) = r;‘( - (y - yO), (x -x0)). The virtue of 
this flow field is that it preserves radial symmetry. Therefore 

d 
05 1 

N= 32000 

0.4 

6 0.3 
F 
2 
E 

8 

$02 

01 

0.0 
0 

\ I 

2 
0 0 05 0.10 

TIME 

h 

n;z 32000 

FIGURE 2-Continued 
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this problem has the same solution as the simple diffusion 
problem, namely, the convolution of the Green’s function 
given in Eq. (14) (with v = a,) with the indicator function 
for the disk D,. We denote this solution by ce(x, t). We used 
the radius of a platelet Ye= 1.5 x (10) p4 cm, the ADP diffu- 
sion coefficient crO = 5 x ( 1O))6 cm*/s, and, since the shear 
rate in a typical small blood vessel is about 1000 s ~ ‘, we use 
z0 = 1 x ( 1O))3 s. These parameter values give a Peclet 
number based on platelet size of Pe = Y:/~~c~ = 4.5. Each 
experiment simulated a time period of 0.1 s or lOOr,. 
Compare this with the convection time scale r0 for rotation 
through one radian of the arc and the diffusion time scale 
cr& = 4.57,. 

We performed a series of experiments in which we varied 
the number of particles N used to represent the initial jump 
in concentration, and the timestep At. For each value of N 
and At, m = 10 experiments were performed with different 
realizations of the particles’ random walks. The lattice 
spacing h used for the reconstruction process was chosen, 
based not on the radius of the disk D, (i.e., the size of a 
platelet), but instead based on the radius of the blood vessel 
used in the aggregation calculations, 1, = 25 x ( 10) p4cm. 
The domain used for the reconstruction was a 21, x 21, 
square concentric with the disk D,. For the results 
described below, h = l/641,, so y0 = 3.84/z. In this sense, the 
initial concentration field represented secretion from a 
spatially localized source. 

In Fig. 1, we show surface plots of the exact concentration 
ce(x, t) and the computed concentration c(x, t) at selected 
times. The latter is from an experiment with N = 16,000 and 
At=O.O5z,. The top panels show that the reconstruction 
process smears the initial step in concentration, but is suc- 
cessful overall in reconstructing the initial localized concen- 
tration field. Later panels show computed surfaces which 
look much like the corresponding exact solution surfaces. 

In each pair of panels of Fig. 2, we follow the timecourse 
of the concentration at six “target” points (x0 + jd,, y,), 
j = 0, 1, . . . . 5, lying on or to the “east” of the disk Do. At 
each time and for each target point, we computed the local- 
area average of the computed and exact concentration by 
averaging their respective values at the lattice points con- 
tained within a platelet-sized disk (radius yO) centered on 
the target point. (The motivation for this averaging is that 
platelets respond to distributed sensing of their environ- 
ment.) We plot the ensemble average (i.e., the average of the 
results of the 10 experiments with identical values of N and 
At), as well as this ensemble average plus/minus one 
standard deviation. Also plotted is the local-area average of 
the exact solution. Results are shown for At = 0.057, and 
N = 4000, 8000, 16,000, and 32,000. The ensemble averages 
all track the exact solution. The standard deviations are at 
most a fraction of 1 % of the peak concentration 1.0. For 
example, at target point (x0 + 4d,, yO), the maximum 
standard deviation in time is 0.0031 with N = 4000, and 

0.0008 with N = 32,000. For each target point, the time 
average of the standard deviation decreases as N-‘I*. 
Similar calculations with At= 0.025~~ (not shown) are 
almost identical to those shown. 

For r > 5z,, the maximum error at each time over the 
entire computational lattice is about 1% of the peak 
concentration when N = 4000, and decreases as N ~ “* for 
larger N. For earlier times, the errors are somewhat larger 
and appear to be dominated by the inability of the recon- 
struction process to capture completely the steep initial 
gradients. 

It would be useful to know how much of the error in these 
calculations is due to the chance statistical fluctuations that 
arise because we choose particular random steps for each of 
our N particles and how much is a systematic bias which 
results from the use of finite N, At, and h. Towards this end, 

TABLE I 

Decomposition of Mean Square Error 

Time GAPSME GAPVAR GAPSB 

IV=4000 

0.00 
1 .oo 
5.00 

10.00 
20.00 
50.00 

100.00 

0.00 
1 .oo 
5.00 

10.00 
20.00 
50.00 

1oQ.00 

0.00 
1.00 
5.00 

10.00 
20.00 
50.00 

100.00 

0.00 
1.00 
5.00 

10.00 
20.00 
50.00 

100.00 

7.29E( - 5) O.OOE( - 0) 7.29E( - 5) 
1.20E( -5) 2.62E( - 6) 9.368( -6) 
5.40E( - 6) 4.29E( - 6) l.llE(-6) 
4.78E( -6) 4.33E( - 6) 4.478( - 7) 
6.19E( -6) 5.49E( -6) 6.978( -7) 
8.21E( -6) 7.24E( -6) 9.76E( -7) 
8.12E( -6) 7.04E( - 6) l.O7E( -6) 

A’=8000 

7.29E( - 5) O.OOE( -0) 
7.858( -6) 1.48E( -6) 
2.98E( - 6) 2.19E( -6) 
2.69E( - 6) 2.40E( - 6) 
3SOE( -6) 3.06E( - 6) 
3.49E( -6) 3.59E( -6) 
4.42E( - 6) 4.06E( - 6) 

N= 16,000 

7.29E(-5) 
6.38E( -6) 
7.85E( -7) 
2.95E( -7) 
4.37E( -7) 
3.22E( - 7) 
3.63E( -7) 

7.29E( - 5) O.OOE( -0) 7.29E( - 5) 
7.55E( -6) 5.65E( -7) 6.96E( -6) 
1.56E(-6) l.OlE( -6) 5.57E(-7) 
1.48E(-6) 1.20E( - 6) 2.70E( - 7) 
1.57E( -6) 1.36E( -6) 2.07E( - 7) 
1.98E( -6) 1.69E(-6) 2.90E( - 7) 
1.95E( -6) 1.70E(-6) 2.46E( -7) 

N = 32,000 

7.29E( - 5) O.OOE( - 0) 7.29E( - 5) 
7.53E( -6) 3.06E( - 7) 7.22E( -6) 
1.26E( -6) 6.34E( - 7) 6.24E( - 7) 
8.32E( - 7) 5.94E( - 7) 2.37E( -7) 
8.40E( - 7) 6.87E( - 7) 1.53E(-7) 
9.94E( - 7) 8.63E( -7) 1.32E( -7) 
l.O3E( -6) 8.92E( -7) 1.34E( -7) 
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we proceed as follows: For fixed N, At, and h, let cCr)( ., t) (GAPSB). We call the term on the left in Eq. (37) the grid- 
denote the computed solution at time t in the rth of averaged pointwise mean square error (GAPSME). In 
m experiments. Define C” = (l/m) Cy=, c”); this is an Table I, we display these quantities at selected times for 
estimated ensemble average, the true ensemble average is experiments with N = 4000, 8000, 16,000, and 32,000 and 
defined as F” = lim,, m C”. From the definition of C”, it At = 0.05~~. For each N, m = 10 experiments were per- 
follows easily that formed. For all times t > rO, GAPVAR $ GAPSB. For 

t < rO, the principal component of the error is due to the 

k 2 (c(~‘-c~)‘=~,~~ (c”‘-F”)~+(C”-~~)~. (36) 
finite resolution of the reconstruction process. At later 

r=l times, the error is dominated by statistical noise. As N 
increases, GAPVAR decreases as N ~ ‘. GAPSB also 

We take the average of each side of Ea. (37) over the generally decreases with increasing N. In a linear problem 

computational lattice to obtain 
‘\ I 

( ccr) - ce)’ 
II I 

(Note that the first term 

such as ours, the limit m -+ a, with fixed N, is the same as 
the limit N+ co, because the samples may be pooled. 
Hence, if C2 were used to compute GAPSB, the latter 
should display no N dependence. Thus, the computed 
GAPSB, calculated using the estimated ensemble average 

+ Il(P”-ce)*ll,. (37) ( -“‘, contains residual variance. Still, we conclude that the 
I true bias is less than the displayed values of GAPSB and 

that the total error is predominantly due to noise. 
may also be written In the platelet aggregation calculations, a Peclet number 

(l/m) CT=, IV’) - cell i.) The first term on the right side of based on the blood-vessel radius is more appropriate than 
Eq. (37) gives a measure of the fluctuations from one run to one based on platelet size. The former typically has a 
the next about the mean computed solution; we call it the magnitude of approximately 1000. The remaining tests 
grid-averaged pointwise variance (GAPVAR). The last involve a Peclet number of about 1000 and also involve flow 
term in Eq. (37) gives an estimate of the squared bias, the fields whose action is to elongate the initial distribution of 
error which remains after the fluctuations are averaged out; chemical, in opposition to the action of diffusion. 
we call it the grid-averaged pointwise squared bias For the second set of tests, we use r,, = 12.5 x 10 p4 cm, 

TlUi:~ 0 ooooo- T TIME- 0 25000 

TIME- 0 50000 TIME= 0 75000 

b 

‘IIML- I 00000 TIUF:- I 25000 

TIME- 1 50000 TIME- I 75000 

FIG. 3. “Gold standard” computed concentration at selected times. Flow is stagnation point flow. Pe x 977. Ensemble average of 20 runs with 
N = 32,000 and At = O.O125r,. Time is measured in seconds. 
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0,=4x 1o-7 cm2/s, and the stagnation-point flow field 
u(x,y)=z;i((x-x0), -(y--J), with r,=lxlO-3s. 
This gives a Peclet number Pe = r~/z,a, z 1000. For these 
experiments, the reconstruction of c is carried out in a 
4Z0 x 2Z0 rectangle centered on (x,, y,). The stagnation- 
point flow is assumed to obtain in the entire plane, and the 
duration of the experiments is limited so that no particles 
are carried close to the boundary of the rectangle used in the 
reconstruction. We know of no exact solution for this 
problem, so, for purposes of comparison, we define a 
“gold standard” approximate solution by forming the 
ensemble average of 20 experiments each with N= 32,000, 
dt=O.O125r,, and h=&l,=&r,. 

In Fig. 3 we show surface plots of the gold-standard solu- 
tion at time intervals of 0.252,. In these calculations, the 

TIME= 0.00000 

0 
TIME= 0.25000 

a 

TIME= 0.75000 

TIME= 1.25000 

TIME= 1.75000 

characteristic diffusion distance (a,z,)‘/’ is less than h, and 
the computed results show more smoothing than this. 
However, the extra smoothing is not cumulative; it has 
extent O(h), begins at timestep 0, and does not get worse 
with time. This contrasts strongly with finite-difference 
methods which introduce artificial diffusion whose effect 
accumulates with time. The ability of the current method to 
tightly constrain the extra smoothing comes about because 
the concentration field is constructed from the instan- 
taneous positions for the particles {xk}, and the motion of 
these particles reflects the true diffusion coefficient. In fact, 
the method can be run down to zero diffusion coefficient 
and then gives a filtered view of the concentration field. 
These statements are illustrated in Fig. 4 which shows the 
position of the particles at selected times for (rO = 0 (left 

TIME= 0.00000 

0 
TIME= 0.25000 

u 
.--~ 
TIME= 0.75000 

TIME= 1.25000 

TIME= 1.75000 

FIG. 4. Particle locations at selected times. Flow is stagnation point flow. Left panels depict case of no diffusion (Pe = co). Right panels show the 
case Pe z 977, N = 16,000, At = O.O125r,. Time is measured in seconds. 
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al 

TIME- 0.00000 TIME= 0.25000 

'IIME= 0 50000 

/ 
i 

1 

TIME= 0 00000 T[ME= 0 25000 

2 
TIME= 100000 

I‘IME= 150000 

TIME= 125000 

TIME= 175000 

b2 

TIME= I 00000 TIME= 125000 

~ 
I 

FIG. 5. (a) Computed concentration at selected times. Flow is stagnation point flow: Pe = co, N = 16,000, dt = 0.01257,. Concentrations correspond 
to particle positions in left panels of Fig. 4. (b) Computed concentration at selected times. Flow is stagnation point flow: Pe z 977, N = 16,000, At = 
O.O125r,. Concentrations correspond to particle positions in right panels of Fig. 4. 
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panels) and CJ~ = 4 x 10 -’ as above (right panels). Each of 
these experiments involves one run with 16,000 particles. In 
Fig. 5 we show surface plots of the respective reconstructed 
concentration fields from these two experiments. The 
increased width of the surfaces shown in the last pictures of 
Figs. 3 and 5b compared with that in Fig. 5a is a conse- 
quence of nonzero diffusion. The somewhat fuzzy character 
of the plots in Fig. 5b compared with the “gold-standard” 
surface shown in Fig. 3 reflects the different number of par- 
ticles used in the two calculations (16,000 vs 640,000). 

We have used the gold-standard solution to compute 
estimated errors in runs using various values of N and d t. 
We note that these are estimates only of the errors due to N 
and d t, not to h, because all of the calculations used the 
same value of h. Breakdown of the error into variance 
(GAPVAR) and estimated squared-bias (GAPSB) shows 
that the error is dominated by the variance and decreases 
as N ~ ‘I*. The results show little sensitivity to variations 
in At. 

In Fig. 6, we have plotted the 1,) I,, and I, norms of the 
estimated errors as functions of time, for an experiment with 
N = 16,000 and At = 0.01252,. Error curves for other values 
of N are very similar to those shown except for a vertical 
shift whose size reflects the N -‘I* behavior of the errors. 
As seen from Fig. 6, the error increases approximately 
exponentially in time (but not with timestep at fixed t). 
The probable reason for this error growth is the severe 
stretching of the approximately elliptical region in which c 
is significantly different from zero. In support of this conjec- 
ture, we note that the circumference of the ellipse shown in 
Fig. 4 also grows approximately exponentially in time with 

00 0 0018 
TIME 

FIG. 6. Time course of errors, Flow is stagnation point flow: Pe z 977, 
N= 16,000, A? = O.O125t,. Lower solid curve shows I2 norm, long-dashed 
curve shows I, norm, and short-dashed curve shows I, norm. Upper solid 
cmve shows growth in relative circumference of elliptical image of circle on 
which particles were introduced. Time is measured in seconds. 

a rate constant close to that governing the error growth (see 
Fig. 6). Recall from Section 2 that the norm of a gradient 
vector g, grows in response to local stretching of the fluid in 
the direction perpendicular to the vector. Based on this, it 
would be natural to suppose that this growth magnifies the 
noise inherent in our use of a random walk and that this is 
the origin of the exponential growth in time of the variance 
seen in these calculations. However, closer examination 
suggests that this is not the case. 

We modified the algorithm described above in the 
following way to limit growth in the size of llg,J. Let g, 
denote the maximum of llgkII at t = 0, and let B denote a 
positive number. At the end of each timestep, compute 
l/g, II for each k. For any k for which llgk II > /?g,, let p = 
int( llgkll/(figO)) + 1, and partition the existing particle k into 
p particles each located at x,+ and with gradient vector g,/p. 
By thus partitioning the particles, llgkll is kept below fig, for 
all time. The new particles created when particle k is parti- 
tioned are initially located at the same point, but in subse- 
quent timesteps their different random steps lead to their 
dispersal. In Fig. 7, we show the I, error for an experiment 
using the modified algorithm. For this experiment, we begin 
with N = 16,000 and set /I = 1, so that the size of a gradient 
vector never exceeds its initial size (the sizes are initially 
uniform). By the time of the first point on the error curve, 
N has grown to approximately 34,000 and by the end of the 
run, N has grown to almost 120,000. If the exponential 
growth rate for the error (with N fixed) were caused by the 
growth of the gradient vectors, then we would expect the 
error curve produced by the modified algorithm to be much 
flatter. This is not the case, as can be seen by comparison 

0 ouuu 0 0018 
TIME 

FIG. 7. Time course of the I, error. Flow is stagnation point flow: 
Pex977, At =O.O125t,. Dashed curve shows error with algorithm 
modified to do “particle splitting.” N increased from 16,000 to 
approximately 120,000 during the course of the run. Solid curve shows 
error with fixed number of particles, N = 16,000. 
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TIWE= 0 00000 TIMF- 0 00100 

TIME= TIME= 0 00400 I TIME- 0 005ou 

FIG. 8. “Gold standard” computed concentration at selected times. 
Flow is linear shear flow: Pes977. Ensemble average of 10 runs with 
N = 160,000 and At = 0.0125s,. Time is measured in seconds. 

with the I, error curve for an experiment with a fixed 
number N= 16,000 particles. (This curve is also shown in 
Fig. 7.) Instead, the error curve is shifted downward by a 
uniform amount similar to what happens when a larger, but 
fixed, number of particles is used from the outset. The 
magnitude of this shift seems to be determined by the 
number of particles which exist early in the calculations. In 
fact, if N= 34,000 particles are used for the entire calcula- 
tion, the error curve (not shown) is essentially coincident 
with that produced by the modified algorithm. Thus, it 
seems that “particle splitting” is not an attractive option 
and that the reason for this is that the error growth is 
not determined by the growth in the size of the gradient 
vectors. 

For the third set of tests, we use the same values for the 
physical parameters as in the second set, and the flow field 

TIME- D 00100 

FIG. 9. Computed concentration at selected times. Flow is linear 
shear flow. There is no diffusion (Pe = co): N = 16,000, AC = O.O125r,. Time 
is measured in seconds. 

we use is the linear shear flow u(x, t) = z; ‘(( y - y,), 0). 
This flow carries the circular boundary of the disk D, into 
an ellipse whose eccentricity increases markedly and whose 
major axis rotates towards the x-axis as time progresses. 
The domain for the reconstruction process is the rectangle 
used in the second set of tests, and again the calculations are 
limited in duration so that particles are not carried near the 
rectangle’s boundary. Errors are again estimated by com- 
parison with a computed gold-standard solution, and the 
behavior of the errors is similar to those just reported: the 
square-error is dominated by the variance, the variance 
decreases as N-l, and the norm of the errors increases 
exponentially in time as the ellipse is stretched more and 
more. Hence, we simply illustrate the results of these 
calculations by displaying (see Figs. 8-10) surface plots of 
the computed solutions. 

581/100/I-2 
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TIME= 0 00000 TIME= 0 00100 

TIME= 0 00400 TIME= 0.00500 

I:..““. FIG. 10. Computed concentration at selected times. Flow is KIWI 
shear flow: Pex977, N = 16,000, dr =O.O125r,. Time is measured in 
seconds. 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

We believe that the numerical results presented above 
demonstrate that our method solves the two-dimensional 
convection-diffusion equation (1). The special strength of 
the method is its ability to accurately track convective trans- 
port and to simulate diffusive transport at the true dif- 
fusivity even when this diffusivity is very small. The method 
gives computed concentrations of moderate accuracy and 
precision for a moderate amount of computational work. 
The computational work rises rapidly as higher accuracy 
and precision for a moderate amount of computational 
work. The computational work rises rapidly as higher 
accuracy and precision are required. This is reflected in the 

O(N-‘I’) dependence of the method’s errors and is similar 
to the behavior of other Monte Carlo methods (see, for 
example, [ 14, 16, 171). We will explore the possibility of 
adapting to our method variance reduction techniques such 
as those introduced by Chorin [S] and extended to ran- 
dom-vortex calculations by Chang [4]. For a prescribed 
level of error, these techniques may reduce substantially the 
method’s computational costs. We will also explore the 
possibility of using a grid-free method to solve the Poisson 
equations (3)-(4) in order to reduce the small amount of 
smoothing currently associated with the reconstruction 
process. In this regard, Greengard and Rokhlin’s [ 111 
multipole-expansion algorithm offers much promise; it 
provides for very efficient calculation of the potential and/or 
its derivatives due to a large collection of point charges. We 
may use this algorithm to find the functions 4, and I/?, 
needed in Eq. (5) without first having to determine 4 and $, 
and without using difference approximations to their 
derivatives. 
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